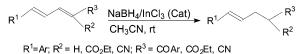
Remarkably Selective Reduction of the α,β -Carbon–Carbon Double Bond in Highly Activated $\alpha,\beta,\gamma,\delta$ -Unsaturated Alkenes by the InCl₃–NaBH₄ Reagent System

Brindaban C. Ranu* and Sampak Samanta

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta - 700 032, India


ocbcr@iacs.res.in

Received June 7, 2003

Abstract: A combination of sodium borohydride and a catalytic amount of indium(III) chloride in acetonitrile reduces exclusively the α,β -carbon–carbon double bond in $\alpha,\beta,\gamma,\delta$ -unsaturated diaryl ketones, dicarboxylic ester, cyanoester, and dicyano compounds.

The selective reduction of one functional group in molecules containing a number of other similar reducible functionalities is a challenging problem in organic synthesis. The reduction of $\alpha, \beta, \gamma, \delta$ -unsaturated carbonyl compounds is very complicated because of the presence of three reducible positions. A literature survey shows a few isolated examples,1-5 and no general study was found. The Birch reduction with lithium and ammonia of an $\alpha, \beta, \gamma, \delta$ -unsaturated steroidal ketone produces a β, γ unsaturated ketone.¹ In another report, hydrogenation with Ni-Al₂O₃ under very controlled conditions reduces the γ, δ -unsaturated double bond while the presence of Pb or Cd reduces the α,β -one.² The reduction of the α,β double bond is also observed using triallylsilane in the presence of either rhodium³ or platinum⁴ catalyst. The reduction of $\alpha, \beta, \gamma, \delta$ -unsaturated carboxylic ester by trialkylsilane in the presence of Wilkinson's catalyst provides β , γ -unsaturated ester from acyclic molecules, whereas in cyclic strained compounds the α,β -double bond is reduced.5

The reduction by indium metal has attracted considerable current attention because of its remarkable efficiency for selective reduction in multifunctional molecules.⁶ Very recently, indium hydrides, formed in situ from the combination of indium halides and metal hydrides, have shown great promise as practical and better alternatives to the existing reducing agents.⁷ As a part of our continued interest in indium-mediated reactions, $6e^{-j.7e.8}$ we have discovered that the indium(III) chloride–sodium borohydride reagent system selectively SCHEME 1

reduces the α,β -carbon–carbon double bond in highly activated $\alpha,\beta,\gamma,\delta$ -unsaturated alkenes (Scheme 1).

The experimental procedure is very simple. The $\alpha,\beta,\gamma,\delta$ unsaturated alkene was stirred with a solution of sodium borohydride and a catalytic amount of indium(III) chloride (15 mol %) in anhydrous acetonirile at room temperature for a period of time required to complete the reaction (monitored by TLC). The reaction mixture was then diluted with ether (technical grade, 98%), and the product was isolated by extraction followed by purification through column chromatography. It has been observed that quenching of the reaction mixture with water leads to reduction of the keto-carbonyl by the excess hydride reducing agent present to the extent of 2-5%. However, when the reaction was quenched with commercial ether, which usually contains traces of water, reduction of ketone functionality was arrested.

A wide variety of $\alpha, \beta, \gamma, \delta$ -unsaturated diaryl ketones, dicarboxylic esters, cyanoesters, and dicyano compounds underwent exclusive reduction of the α,β -carbon–carbon double bond to provide the corresponding γ , δ -unsaturated derivatives in high yields. The results are summarized in Table 1. Several sensitive groups such as Cl, OBn, OMe, and methylenedioxy remained unaffected. However, this selective reduction is observed only in highly activated alkenes as listed in Table 1. The corresponding monocarboxylic ester does not undergo any reduction, and aryl alkyl ketone leads to partial reduction. In a comparative study, an $\alpha, \beta, \gamma, \delta$ -unsaturated diaryl ketone (entry 1) on treatment with sodium borohydride in methanol for 10 h produces the corresponding alcohol without any reduction of the double bonds whereas hydrogenation over palladium-charcoal in ethanol furnishes the saturated alcohol. On the other hand, lithium aluminum hydride leads to a mixture of reduced products.

Although the mechanism of this reduction is not very clear, it may be speculated that chloroindium hydride (Cl₂InH), formed by the combination of sodium borohydride and indium(III) chloride,^{7c} might be the active species.

 $^{^{\}ast}$ To whom correspondence should be addressed. Fax: 91-33-24732805.

⁽¹⁾ Nussim, M.; Mazur, Y.; Sondheimer, E. *J. Org. Chem.* **1964**, *29*, 1120.

⁽²⁾ Borunova, N. V.; Friedlin, L. K.; Gvinter, L. I.; Atabekov, T.; Zamureenko, V. A.; Kustanovich, I. M. *Chem. Abstr.* **1972**, *77*, 87461n.

⁽³⁾ Ojima, I.; Kogure, T.; Nagai, Y. *Tetrahedron Lett.* **1972**, 5035.
(4) Yoshii, E.; Ikeshima, H.; Ozaki, K. *Chem. Pharm. Bull.* **1972**, 20 1827.

⁽⁵⁾ Liu, H.-J.; Ramani, B. Synth. Commun. 1985, 15, 965.

^{(6) (}a) Moody, C. J.; Pitts, M. R. Synlett **1998**, 1028, 1029. (b) Reddy, G. V.; Rao, G. V.; Iyengar, D. S. Tetrahedron Lett. **1999**, 40, 3937. (c) Inoue, K.; Yasuda, M.; Shibata, I.; Baba, A. Tetrahedron Lett. **2000**, 41, 113. (d) Pitts, M. R.; Harrison, J. R.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 **2001**, 955. (e) Ranu, B. C.; Guchhait, S. K.; Sarkar, A. Chem. Commun. **1998**, 2113. (f) Ranu, B. C.; Dutta, P.; Sarkar, A. J. Chem. Soc., Perkin Trans. 1 **1999**, 1139. (g) Ranu, B. C.; Dutta, J.; Guchhait, S. K. J. Org. Chem. **2001**, 66, 5624. (h) Ranu, B. C.; Dutta, J.; Guchhait, S. K. J. Org. Chem. **2001**, 66, 4102. (j) Ranu, B. C.; Samanta, S.; Das, A. Tetrahedron Lett. **2002**, 43, 5993.

^{(7) (}a) Abernethy, C. D.; Cole, M. L.; Davies, A. J.; Jones, C. *Tetrahedron Lett.* **2000**, *41*, 7567. (b) Inoue, K.; Sawada, A.; Shibata, I.; Baba, A. *Tetrahedron Lett.* **2001**, *42*, 4661. (c) Inoue, K.; Sawada, A.; Shibata, I.; Baba, A. *J. Am. Chem. Soc.* **2002**, *124*, 906. (d) Takami, K.; Yorimitsu, H.; Oshima, K. *Org. Lett.* **2002**, *4*, 2993. (e) Ranu, B. C.; Samanta, S. *Tetrahedron Lett.* **2002**, *43*, 7405.

R ¹				\mathbb{R}^{2}	
R ¹	R ²	R ³	time(min)	yield(%) ^a	
C ₆ H ₅	н	C ₆ H ₅ -C=O	60	91	
C_6H_5	н	<i>р</i> (Ме)-С ₆ Н ₄ -С=О	60	89	
C_6H_5	н	<i>р</i> (CI)-C ₆ H ₄ -C=O	50	89	
C_6H_5	н	<i>р</i> (OBn)-С ₆ Н ₄ -С=О	70	87	
<i>т</i> (OMe)-С ₆ Н ₄	н	<i>р</i> (Ме)-С ₆ Н ₄ -С=О	90	85	
	н	<i>p</i> (Me)-C ₆ H₄-C=O	75	86	
C_6H_5			90	77	
C_6H_5	CO ₂ Et	CO ₂ Et	90	89	
C_6H_5	CN	CO ₂ Et	60	86	
	CN	CO ₂ Et	80	83	
C_6H_5	CN	CN	45	97	
<i>m</i> (OMe)-C ₆ H ₄	CN	CN	70	95	
	R^{1} $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $m(OMe)-C_{6}H_{4}$ O $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ O $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$	R^1 R^2 R^1 R^2 C_6H_5 H C_6H_5 CO_2Et C_6H_5 CN C_6H_5 CN C_6H_5 CN C_6H_5 CN	$R^{1} \qquad R^{3} \qquad \frac{\ln \operatorname{Cl}_{3}/\operatorname{NaBH}_{4}}{\operatorname{CH}_{3}\operatorname{CN}} R^{1}$ $R^{1} \qquad R^{2} \qquad R^{3}$ $C_{6}H_{5} \qquad H \qquad C_{6}H_{5}-C=O$ $C_{6}H_{5} \qquad H \qquad p(Me)-C_{6}H_{4}-C=O$ $C_{6}H_{5} \qquad H \qquad p(Cl)-C_{6}H_{4}-C=O$ $C_{6}H_{5} \qquad H \qquad p(OBn)-C_{6}H_{4}-C=O$ $m(OMe)-C_{6}H_{4} \qquad H \qquad p(Me)-C_{6}H_{4}-C=O$ $M(OMe)-C_{6}H_{4} \qquad H \qquad p(Me)-C_{6}H_{4}-C=O$ $C_{6}H_{5} \qquad H \qquad p(Me)-C_{6}H_{4}-C=O$ $C_{6}H_{5} \qquad CO_{2}Et$ $C_{6}H_{5} \qquad CN \qquad CO_{2}Et$ $C_{6}H_{5} \qquad CN \qquad CN$	R1 R2 R3 time(min) R1 R2 R3 time(min) C6H5 H C6H5-C=O 60 C6H5 H $p(Me)-C_6H_4-C=O$ 60 C6H5 H $p(Cl)-C_6H_4-C=O$ 60 C6H5 H $p(OBn)-C_6H_4-C=O$ 50 C6H5 H $p(OBn)-C_6H_4-C=O$ 90 C6H5 H $p(Me)-C_6H_4-C=O$ 90 C6H5 H $p(Me)-C_6H_4-C=O$ 90 C6H5 H $p(Me)-C_6H_4-C=O$ 90 C6H5 C02Et C02Et 90 C6H5 CN C02Et 60 C6H5 CN C02Et 80 C6H5 CN CN 45	

TABLE 1. Reduction of Activated $\alpha, \beta, \gamma, \delta$ -UnsaturatedAlkenes by InCl₃/NaBH4

 a The yields refer to those of pure isolated products characterized by spectroscopic data (IR and $^1\rm H$ and $^{13}\rm C$ NMR) and elemental analysis.

In conclusion, the indium(III) chloride–sodium borohydride reagent system provides a unique method for selective (exclusive) reduction of the α,β -carbon–carbon double bond in highly activated $\alpha,\beta,\gamma,\delta$ -unsaturated alkenes which is not achievable by conventional nucleophilic hydride reducing agents. Certainly, this demonstrates the potential of indium hydride and to the best of our knowledge this constitutes the first general method of such selective reduction by a simple reagent. We believe, this procedure will find useful applications in organic synthesis.

Experimental Section

General Methods. Acetonitrile was distilled over phosphorus pentoxide and stored over molecular sieves (4 Å). The α , β , γ , δ -unsaturated alkenes were prepared by standard methods.⁹ IR spectra were taken as thin films. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ solutions at 300 and 75 MHz, respectively.

General Procedure for Reduction. Representative Procedure for the Reduction of 1,5-Diphenylpent-2,4-diene-1-one (Entry 1). To a stirred solution of indium(III) chloride (30 mg, 0.135 mmol) and sodium borohydride (56 mg, 1.5 mmol) in dry acetonitrile (3 mL) was added a solution of 1,5-diphenylpenta-2,4-dien-1-one (234 mg, 1 mmol) in acetonitrile (1 mL) at room temperature under nitrogen. Stirring was continued for another 1 h (monitored by TLC), and the reaction mixture was quenched with ether (technical grade, 98%) (10 mL). The whole mixture was then stirred for another 5 min. After the mixture settled, the supernatant organic layer was decanted and the residual semisolid mass (inorganic part) was further extracted by washing with ether. The combined ether extract was washed with brine, dried (Na₂SO₄), and evaporated to leave the crude product which was purified by column chromatography over silica gel to furnish the pure 1,5-diphenylpent-4-en-1-one (215 mg, 91%) as a viscous liquid: IR 1683, 1651, 1596 cm⁻¹; ¹H NMR δ 7.99 (d, J = 7.23 Hz, 2H), 7.21–7.57 (m, 8H), 6.48 (d, J =15.84 Hz, 1H), 6.17 (dt, J = 15.84, 6.87 Hz, 1H), 3.16 (t, J =7.53 Hz, 2H), 2.64–2.71 (m, 2H); $^{13}\mathrm{C}$ NMR δ 199.8, 137.9, 137.3, 133.5, 131.2, 129.6, 129.1 (2C), 128.9 (2C), 128.5 (2C), 127.5, 126.5 (2C), 38.7, 27.9. Anal. Calcd for C₁₇H₁₆O: C, 86.40; H, 6.82. Found: C, 86.35; H, 6.77.

This procedure is followed for the reduction of all the substrates listed in Table 1. Spectroscopic (IR and ^{1}H and ^{13}C NMR) and analytical data for all products are presented below in order of their entries in Table 1.

(4'-Methylphenyl)-5-phenylpent-4-en-1-one (entry 2): IR 1681, 1651, 1606 cm⁻¹; ¹H NMR δ 7.91 (d, J = 8.13 Hz, 2H), 7.21–7.38 (m, 7H), 6.48 (d, J = 15.87 Hz, 1H), 6.32 (dt, J = 15.87, 6.75 Hz, 1H), 3.13 (t, J = 7.50 Hz, 2H), 2.63–2.70 (m, 2H), 2.42 (s, 3H); ¹³C NMR δ 199.4, 144.2, 137.9, 134.8, 131.1, 129.8 (2C), 128.9 (2C), 128.8, 128.5 (2C), 127.5, 126.5 (2C), 38.5, 28.0, 22.0. Anal. Calcd for C₁₈H₁₈O: C, 86.36; H, 7.24. Found: C, 86.41; H, 7.23.

1-(4'-Chlorophenyl)-5-phenylpent-4-en-1-one (entry 3): IR 1680, 1651, 1589 cm⁻¹; ¹H NMR δ 7.91 (d, J = 8.52 Hz, 2H), 7.43 (d, J = 8.52 Hz, 2H), 7.17–7.38 (m, 5H), 6.46 (d, J = 15.87 Hz, 1H), 6.27 (dt, J = 15.87, 6.75 Hz, 1H), 3.15 (t, J = 7.23 Hz, 2H), 2.61–2.68 (m, 2H); ¹³C NMR δ 198.5, 139.9, 137.7, 135.6, 131.3, 129.8 (2C), 129.3 (2C), 129.2, 128.9 (2C), 127.5, 126.4 (2C), 38.6, 27.8. Anal. Calcd for C₁₇H₁₅ClO: C, 75.41; H, 5.58. Found: C, 75.36; H, 5.60.

1-(4'-Benzyloxyphenyl)-5-phenylpent-4-en-1-one (entry 4): IR 1679, 1649, 1601 cm⁻¹; ¹H NMR δ 7.88 (d, J = 8.13 Hz, 2H), 7.19–7.46 (m, 10H), 6.98 (d, J = 8.13 Hz, 2H), 6.43 (d, J = 15.87 Hz, 1H), 6.22 (dt, J = 15.87, 6.69 Hz, 1H), 5.07 (s, 2H), 3.13 (t, J = 7.2 Hz, 2H), 2.55–2.61 (m, 2H); ¹³C NMR δ 199.1, 158.7, 138.0, 137.4, 130.7, 130.5, 129.1 (2C), 129.0 (2C), 128.9, 128.4, 127.9 (2C), 127.8 (2C), 127.6, 126.4 (2C), 115.1 (2C), 70.5, 38.7, 27.8. Anal. Calcd for C₂₄H₂₂O₂: C, 88.36; H, 6.79. Found: C, 88.22; H, 6.78.

1-(4'-Methylphenyl)-5-(3'-methoxyphenyl)pent-4-en-1one (entry 5): IR 1681, 1651, 1604 cm⁻¹; ¹H NMR δ 7.89 (d, J = 8.1 Hz, 2H), 7.18–7.27 (m, 3H), 6.74–6.95 (m, 3H), 6.44 (d, J = 15.87 Hz, 1H), 6.28 (dt, J = 15.87, 6.63 Hz, 1H), 3.81 (s, 3H), 3.09 (t, J = 7.50 Hz, 2H), 2.61–2.68 (m, 2H), 2.40 (s, 3H); ¹³C NMR δ 199.3, 160.2, 144.2, 139.4, 134.8, 131.0, 129.8, 129.7, 129.6 (2C), 128.8 (2C), 119.1, 111.8, 111.7, 55.5, 38.5, 27.9, 22.0. Anal. Calcd for C₁₉H₂₀O₂: C, 81.39; H, 7.19. Found: C, 81.21; H, 7.12.

5-(3',4'-Dioxymethylenephenyl)-1-(4'-methylphenyl)pent-4-en-1-one (entry 6): IR 1681, 1651, 1606, 1600, cm⁻¹; ¹H NMR δ 7.87 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 6.88 (d, J = 1 Hz, 1H), 6.70–6.77 (m, 2H), 6.36 (d, J = 15.78 Hz, 1H), 6.10 (dt, J = 15.78, 6.87 Hz, 1H), 5.93 (s, 2H), 3.07 (t, J = 7.2 Hz, 2H), 2.57–2.64 (m, 2H), 2.41 (s, 3H); ¹³C NMR δ 199.5, 148.3, 147.1, 144.2, 134.8, 132.4, 130.6, 129.7 (2C), 128.6 (2C), 127.9, 120.8, 108.6, 105.9, 101.2, 38.6, 27.9, 22.0. Anal. Calcd for C₁₉H₁₈O₃: C, 77.53; H, 6.16. Found: C, 77.46; H, 6.05.

3-Phenyl-1-(α -tetralonyl)prop-2-ene (entry 7): IR 1681, 1651, 1598 cm⁻¹; ¹H NMR δ 7.75 (d, J = 7.77 Hz, 1H), 7.09–7.41 (m, 8H), 6.39 (d, J = 15.81 Hz, 1H), 6.18 (dt, J = 15.81, 7.44 Hz, 1H), 2.35–2.94 (m, 3H), 2.15–2.22 (m, 2H), 1.76–1.90 (m, 2H); ¹³C NMR δ 199.8, 144.5, 137.8, 133.6, 132.9, 132.5, 129.1, 128.9 (2C), 128.4, 127.5, 127.0, 126.5, 126.4 (2C), 48.0, 33.7, 29.1, 28.6. Anal. Calcd for C₁₉H₁₈O: C, 86.98; H, 6.91. Found: C, 86.79; H, 6.87.

1-Diethylcarboxy-4-phenylbut-3-ene (entry 8): IR 1732 cm⁻¹; ¹H NMR δ 7.34 (m, 5H), 6.47 (d, J = 15.84 Hz, 1H), 6.15 (dt, J = 15.84, 7.17 Hz, 1H), 4.23 (q, J = 7.20 Hz, 4H), 3.49 (t,

⁽⁸⁾ Ranu, B. C. Eur. J. Org. Chem. 2000, 2347.

⁽⁹⁾ Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. In *Vogel's Text Book of Practical Organic Chemistry*, 5th ed.; ELBS/ Longman: Essex, U.K., 1989.

J = 7.47 Hz, 1H), 2.81 (m, 2H), 1.25 (t, J = 7.20 Hz, 6H); ¹³C NMR δ 169.3 (2C), 137.4, 133.2, 128.9 (2C), 127.8, 126.6 (2C), 125.9, 61.8 (2C), 52.4, 32.6, 14.5 (2C). Anal. Calcd for C₁₆H₂₀O₄: C, 69.54; H, 7.29. Found: C, 69.41; H, 7.22.

1-Cyano-1-ethylcarboxy-4-phenylbut-3-ene (entry 9): IR 2256, 1745 cm⁻¹; ¹H NMR δ 7.18–7.42 (m, 5H), 6.58 (d, J = 15.75 Hz, 1H), 6.17 (dt, J = 15.75, 7.20 Hz, 1H), 4.27 (q, J = 7.20 Hz, 2H), 3.62 (t, J = 6.81 Hz, 1H), 2.82 (dd, J = 7.17, 7.11 Hz, 2H), 1.30 (t, J = 7.20 Hz, 3H); ¹³C NMR δ 165.9, 136.7, 135.4, 129.0 (2C), 128.3, 126.8 (2C), 122.8, 116.5, 63.3, 38.3, 33.7, 14.4. Anal. Calcd for C₁₄H₁₅O₂N: C, 73.34; H, 6.59; N, 6.10. Found: C, 73.29; H, 6.48; H, 6.14.

1-Cyano-1-ethylcarboxy-4-(3',4'-dioxymethylenephenyl)but-3-ene (entry 10): IR 2255, 1743 cm⁻¹; ¹H NMR δ 6.89 (s, 1H), 6.71–6.80 (m, 2H), 6.48 (d, J= 15.69 Hz, 1H), 6.01 (dt, J= 15.69, 6.81 Hz, 1H), 5.95 (s, 2H), 4.28 (q, J= 7.20 Hz, 2H), 3.62 (t, J= 6.87 Hz, 1H), 2.79–2.83 (m, 2H), 1.30 (t, J= 7.20 Hz, 2H), Hz, 3H); ¹³C NMR δ 165.8, 148.4, 147.2, 134.9, 131.1, 122.8, 121.5, 116.0, 109.7, 108.6, 101.5, 63.4, 38.4, 35.9, 14.4. Anal. Calcd for C₁₅H₁₅O₄N: C, 65.92; H, 5.53; N, 5.12. Found: C, 65.75; H, 5.44; N, 5.01.

1,1-Dicyano-4-phenylbut-3-ene (entry 11): IR 2258, 1649

cm⁻¹; ¹H NMR δ 7.25–7.43 (m, 5H), 6.69 (d, J=15.75 Hz, 1H), 6.17 (dt, J=15.75, 7.41 Hz, 1H), 3.80 (t, J=6.60 Hz, 1H), 2.88 (dd, J=7.62, 6.63 Hz, 2H); ¹³C NMR δ 137.5, 136.0, 129.2 (2C), 129.0, 127.1 (2C), 120.3, 112.7 (2C), 34.6, 23.8. Anal. Calcd for C₁₂H₁₀N₂: C, 79.09; H, 5.53; N, 15.37. Found: C, 79.01; H, 5.42; N, 15.25.

1,1-Dicyano-4-(3'-methoxyphenyl)but-3-ene (entry 12): IR 2258, 1648, 1593 cm⁻¹; ¹H NMR δ 7.24–7.31 (m, 1H), 6.99 (d, J = 7.59 Hz, 1H), 6.97 (s, 1H), 6.83–6.84 (m, 1H), 6.76 (d, J = 15.72 Hz, 1H), 6.16 (dt, J = 15.72, 7.35 Hz, 1H), 3.79–3.83 (m, 4H), 2.88 (dd, J = 7.14, 6.84 Hz, 2H); ¹³C NMR δ 160.3, 137.5, 137.3, 130.0, 120.5, 119.7, 115.2, 112.5 (2C), 112.4, 55.7, 34.6, 23.7. Anal. Calcd for C₁₃H₁₂N₂: C, 73.56; H, 5.69; N, 13.19. Found: C, 73.48; H, 5.57; N, 13.06.

Acknowledgment. The financial support from CSIR, New Delhi [Grant No. 01(1739)/02] for this investigation is gratefully acknowledged. S.S. also thanks CSIR for his fellowship.

JO0347821